Using Graph Algebra to Optimize Neighborhood for Isometric Mapping
نویسندگان
چکیده
Most nonlinear dimensionality reduction approaches such as Isomap heavily depend on the neighborhood structure of manifold. They determine the neighborhood graph using Euclidean distance so that they often fail to nicely deal with sparsely sampled or noise contaminated data. This paper applies the graph algebra to optimize the neighborhood structure for Isomap. The improved Isomap outperforms the classic Isomap in visualization and time complexity, as it provides good neighborhood structure that can speed up the subsequent dimensionality reducing process. It also has stronger topological stability and less sensitive to parameters. This indicates that the more complicated or even time-consuming approaches can be applied to construct the better neighborhood structure whilst the whole time complexity will not raise .The conducted experiments on benchmark data sets have validated the proposed approach.
منابع مشابه
A comment on "Using locally estimated geodesic distance to optimize neighborhood graph for isometric data embedding"
Article history: Received 21 July 2008 Accepted 11 November 2008
متن کاملUsing locally estimated geodesic distance to optimize neighborhood graph for isometric data embedding
We thank authors of the comment for their interest in our paper. Due to our careless, one condition was not presented at the first step of our algorithm in the published version. However, the idea of the algorithm and the given example are all correct, as they are all actually based on the correct and complete conditions. Here we provide a supplement to the first step of the algorithm as follow...
متن کاملEnhanced Multilevel Manifold Learning
Two multilevel frameworks for manifold learning algorithms are discussed which are based on an affinity graph whose goal is to sketch the neighborhood of each sample point. One framework is geometric and is suitable for methods aiming to find an isometric or a conformal mapping, such as isometric feature mapping (Isomap) and semidefinite embedding (SDE). The other is algebraic and can be incorp...
متن کاملCommon Neighborhood Graph
Let G be a simple graph with vertex set {v1, v2, … , vn}. The common neighborhood graph of G, denoted by con(G), is a graph with vertex set {v1, v2, … , vn}, in which two vertices are adjacent if and only if they have at least one common neighbor in the graph G. In this paper, we compute the common neighborhood of some composite graphs. In continue, we investigate the relation between hamiltoni...
متن کاملGraph Convergence for H(.,.)-co-Accretive Mapping with over-Relaxed Proximal Point Method for Solving a Generalized Variational Inclusion Problem
In this paper, we use the concept of graph convergence of H(.,.)-co-accretive mapping introduced by [R. Ahmad, M. Akram, M. Dilshad, Graph convergence for the H(.,.)-co-accretive mapping with an application, Bull. Malays. Math. Sci. Soc., doi: 10.1007/s40840-014-0103-z, 2014$] and define an over-relaxed proximal point method to obtain the solution of a generalized variational inclusion problem ...
متن کامل